Objectives
Addressing a wide-range of technological and human-interaction issues to be resolved before large-scale introduction of advanced urban transportation systems can become a reality. In this context, reference scenarios include:

- Historical town centres with lanes reserved for new transport systems;
- Principal urban roads, open to normal traffic, with specially equipped "e-lanes" reserved for vehicles operating in highly assisted / automatic drive mode.

Current Focus
Development activities are currently focusing on:

- automatic vehicles moving in ‘platoon-mode’ in a dedicated lane;
- electronically-assisted vehicles able to enter and exit automatically from a parking area;
- "dual-mode" vehicles operating in automatic mode when joining and leaving a formation of "cybercars".

Expected Results

- Design and development of ecological concept vehicles for personal mobility and goods transportation;
- Development and implementation of the technology required to enable automatic operation of “cybercars” and “dual mode” advanced city vehicles;
- Study and development of safe, heterogeneous and redundant control architectures;
- Prototype of innovative control architectures, evaluating performance in terms of reliability and safety;
- Mathematical models and algorithms, experimentally validated for the control of vehicles operating in platoon-mode.

SP 3 partners:
CRF, DLR , IKA, INRIA, Robosoft, TNO, ITS, TRW